Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Environ Sci Technol ; 58(13): 5866-5877, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38504110

RESUMEN

Soil microbes, the main driving force of terrestrial biogeochemical cycles, facilitate soil organic matter turnover. However, the influence of the soil fauna on microbial communities remains poorly understood. We investigated soil microbiota dynamics by introducing competition and predation among fauna into two soil ecosystems with different fertilization histories. The interactions significantly affected rare microbial communities including bacteria and fungi. Predation enhanced the abundance of C/N cycle-related genes. Rare microbial communities are important drivers of soil functional gene enrichment. Key rare microbial taxa, including SM1A02, Gammaproteobacteria, and HSB_OF53-F07, were identified. Metabolomics analysis suggested that increased functional gene abundance may be due to specific microbial metabolic activity mediated by soil fauna interactions. Predation had a stronger effect on rare microbes, functional genes, and microbial metabolism compared to competition. Long-term organic fertilizer application increased the soil resistance to animal interactions. These findings provide a comprehensive understanding of microbial community dynamics under soil biological interactions, emphasizing the roles of competition and predation among soil fauna in terrestrial ecosystems.


Asunto(s)
Microbiota , Suelo , Microbiología del Suelo , Bacterias/genética , Hongos/genética , Hongos/metabolismo
2.
J Hazard Mater ; 466: 133567, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38271874

RESUMEN

Arsenic (As) and cadmium (Cd) pose potential ecological threats to cropland soils; however, few studies have investigated their combined effects on multilevel organisms and soil functioning. Here, we used collembolans and soil microbiota as test organisms to examine their responses to soil As and Cd co-contamination at the gene, individual, and community levels, respectively, and further uncovered ecological relationships between pollutants, multilevel organisms, and soil functioning. At the gene level, collembolan transcriptome revealed that elevated As concentrations stimulated As-detoxifying genes AS3MT and GST, whereas the concurrent Cd restrained GST gene expression. At the individual level, collembolan reproduction was sensitive to pollutants while collembolan survival wasn't. At the community level, significant but inconsistent correlations were observed between the biodiversity of different soil keystone microbial clusters and soil As levels. Moreover, soil functioning related to nutrient (e.g., carbon, nitrogen, phosphorus, and sulfur) cycles was inhibited under As and Cd co-exposure only through the mediation of plant pathogens. Overall, these findings suggested multilevel bioindicators (i.e., AS3MT gene expression in collembolans, collembolan reproduction, and biodiversity of soil keystone microbial clusters) in cropland soils co-contaminated with As and Cd, thus improving the understanding of the ecotoxicological impact of heavy metal co-contamination on soil ecosystems.


Asunto(s)
Arsénico , Contaminantes Ambientales , Microbiota , Contaminantes del Suelo , Cadmio/metabolismo , Arsénico/toxicidad , Arsénico/análisis , Suelo , Multiómica , Microbiota/genética , Contaminantes Ambientales/análisis , Productos Agrícolas/metabolismo , Reacción en Cadena de la Polimerasa , Contaminantes del Suelo/metabolismo
3.
J Hazard Mater ; 451: 131133, 2023 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-36889073

RESUMEN

Effects of non-antibiotic pharmaceuticals on antibiotic resistance genes (ARGs) in soil ecosystem are still unclear. In this study, we explored the microbial community and ARGs variations in the gut of the model soil collembolan Folsomia candida following soil antiepileptic drug carbamazepine (CBZ) contamination, while comparing with antibiotic erythromycin (ETM) exposure. Results showed that, CBZ and ETM all significantly influenced ARGs diversity and composition in the soil and collembolan gut, increasing the relative abundance of ARGs. However, unlike ETM, which influences ARGs via bacterial communities, exposure to CBZ may have primarily facilitated enrichment of ARGs in gut through mobile genetic elements (MGEs). Although soil CBZ contamination did not pose an effect on the gut fungal community of collembolans, it increased the relative abundance of animal fungal pathogens contained therein. Soil ETM and CBZ exposure both significantly increased the relative abundance of Gammaproteobacteria in the collembolan gut, which may be used to indicate soil contamination. Together, our results provide a fresh perspective for the potential drivers of non-antibiotic drugs on ARG changes based on the actual soil environment, revealing the potential ecological risk of CBZ on soil ecosystems involving ARGs dissemination and pathogens enrichment.


Asunto(s)
Artrópodos , Microbiota , Animales , Antibacterianos/toxicidad , Artrópodos/genética , Farmacorresistencia Microbiana/genética , Genes Bacterianos , Eritromicina/farmacología , Carbamazepina , Suelo , Microbiología del Suelo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...